Motivation	Methods	Experiments	Questions?

Enhanced robustness of convolutional networks with a push–pull inhibition layer

Presented by Zubia Mansoor

November 9, 2020

Motivation	Methods	Experiments	Summary	Questions?

Overview

1 Motivation

2 Methods

3 Experiments

4 Summary

5 Questions?

Motivation	Methods	Experiments	Summary	Questions?
●0000				

Motivation

Motivation	Methods	Experiments	Summary	Questions?
00000				

Review from last JC

Consider a motivating scenario in radiology

What happens when the model encounters something it hasn't seen before?

- For instance, if the X-Ray copies are blurry and noisy
- Changes in the training and test distribution pose a serious challenge to deep learning vision systems

Motivation	Methods 0000	Experiments	Summary 00	Questions?
Review fro	m last JC Contd			

- Geirhos et al. "Generalisation in humans and deep neural networks"
- Trained CNNs on different types of image distortions to make them more robust
 - Human visual system appears to be more robust than DNNs for the most part
 - DNNs surpass human performance only when trained on the exact distortions type they are later tested on
- Motivation for today's paper
 - CNNs lack robustness to test image corruptions that are not seen during training
 - Need to improve robustness to classification of corrupted test samples

Motivation	Methods	Experiments	Summary	Questions?
00000				

A Brief Background on Model Robustness

Data augmentation

- Included data augmentation schemes such as rotations, cropping to avoid overfitting by CNNs
- Acquired robustness only to the classes of perturbations used for training

Adversarial attacks

- Slightly distorting an input sample for the purpose of confusing a classifier
- Possibly the worst case of input corruption that networks can be subjected to
- Biologically inspired models
 - Network architecture modelled using simple and complex cells in the visual system of the brain

Motivation 0000●	Methods 0000	Experiments 000	Summary 00	Questions? O
Goals of th	is paper			

- Overcome the drawbacks in data augmentation methods that requires robustness is learned
- Incorporate mechanisms in network architecture that intrinsically increase their robustness to corruption of input data
- Propose a new layer for CNNs that increases their robustness to several types of corruptions of the input images

Motivation	Methods	Experiments	Summary	Questions?
	0000			

Methods

Motivation	Methods O●OO	Experiments 000	Summary 00	Questions?
Background				

- Inspired by the push-pull inhibition exhibited by neurons in area V1 of the visual system
- Tuned to respond to visual stimuli even when they are heavily corrupted by noise

Benefits

- No increase in the number of parameters
- Only a negligible increase in computation
- Scalable: can be used in any CNN architecture

Motivation	Methods	Experiments	Summary	Questions?
	0000			

Implementation

Design the push-pull layer P(I) using two convolutional kernels: push, pull kernels

$$P(I) = \theta(k * I) - \alpha \cdot \theta(-k_{\uparrow h} * I)$$

Pull kernel

- larger support region
- weights are computed by inverting and upsampling the push kernel
- Mimic push-pull inhibition by subtracting a fraction of the response of the pull component from that of the push component
- Use ReLU activation for the nonlinear behavior of the push-pull neurons

Motivation	Methods	Experiments	Summary	Questions?
	0000			

Implementation Contd.

Substituting the first convolutional layer of existing CNN architectures

- Do we need to train models from scratch?
 - can replace the first layer of convolutions of an already trained model with the push-pull layer
 - Needs fine-tuning for succeeding layers to adapt to the new responses
- Does it have to be the first layer?
 - can be used at any depth level
 - related to the functions of neurons in early stages of the visual system of the brain

Motivation	Methods	Experiments	Summary	Questions?
		•00		

Experiments

Motivation	Methods	Experiments	Summary	Questions?
		000		

Experiments

Switch to paper

Motivation	Methods 0000	Experiments 000	Summary 00	Questions?
Findings				

- Classification accuracy on the original test set (without corruption) is not affected by the use of the push-pull layer
- Need models with adequately large capacity to substantially benefit from the effect of the push-pull layer

Motivation	Methods	Experiments	Summary	Questions?
			••	

Summary

Motivation 00000	Methods 0000	Experiments 000	Summary O	Questions?
Summary				

- Proposed a novel push-pull layer for CNN architectures to increase the robustness of existing networks
- Results using LeNet on MNIST and ResNet and DenseNet on CIFAR demonstrate that the push-pull layer considerably increase robustness
- Guarantees a systematic improvement of generalization capabilities of the network measured by the relative corruption error

Motivation	Methods	Experiments	Summary	Questions?
				•

Questions?