Generalisation in humans and deep neural networks

NIPS 2018

Presented by Zubia Mansoor

August 20, 2020

Motivation

Consider a motivating scenario in radiology

- What happens when the model encounters something it hasn't seen before?
 - For instance, if the X-Ray copies are blurry and noisy
- Changes in the training and test distribution pose a serious challenge to deep learning vision systems

General

 Conduct a behavioral comparison of human and DNNs to test for robustness on image distortions

Specfic

- Test the performance of DNNs on the exact distortion types they were trained on
- Test the performance of DNNs on previously unseen distortions

Methods

- Controlled lab experiment
- ImageNet data
- Design Challenge 1
 - Problem: DNNs are usually trained for fine-grained categories as compared to humans
 - Solution: Distill over 20,000 categories of ImageNet into 16 entry-level categories using WordNet
- Design Challenge 2
 - Problem: DNNs only use feedforward computation versus recurrent connections used by human brain
 - Solution: Each image is followed by a 200 ms presentation of a pink noise mask

Name	Data type								
Colour vs. greyscale	Dichotomous								
Frue vs. false colour	Dichotomous								
Power equalisation	Dichotomous								
Rotation	4 levels								
Phase noise	7 levels								
Uniform noise	8 levels								
Low pass	8 levels								
High pass	8 levels								
Contrast	100% to 0%								
Eidolon I,II,III	8 levels								
Salt-and-Pepper	100% to 0%								

-

Types of Distortion Contd.

Figure: Sample image of class bird across all distortion types

Goals

• How well do DNNs generalise as compared to humans on previously unseen distortions?

Goals

- How well do DNNs generalise as compared to humans when trained directly on the same distortions?
- To what extent does training on one distortion type helps the network cope with other distortion types?

Experiment I

Standard pre-trained DNNs

Experiment II

Trained on a subset of the standard ImageNet dataset (16-class-ImageNet)

Weight each sample in the loss function to correct for imbalanced classes

ResNet 50- like architecture

Experiment II

Type and amount of distortion selected uniformly

Results: Experiment I

- Humans and DNNs exhibit similar performance on colour-related distortions
- Human appear to be more robust by a small margin for low-contrast, power equalisation and phase noise
- Human appear to be more robust *by a large margin* for uniform noise, low-pass, high-pass, rotation and all eidolon experiments

Results: Experiment II

	colour	88.5	96.7	90.6	50.0	83.1	86.1	84.2	90.8	10.4	8.1	97.9	95.4	72.3	93.0	91.1	92.4	94.9	10.2	11.2	95.5	95.9
	greyscale	86.6	87.8	95.6	<u>94.1</u>	<u>86.2</u>	<u>93.2</u>	<u>87.8</u>	<u>90.5</u>	10.3	9.8	94.0	96.8	<u>96.2</u>	<u>93.3</u>	<u>95.7</u>	<u>94.3</u>	<u>90.9</u>	11.4	12.8	<u>94.8</u>	<u>95.1</u>
ion	contrast (5%)	47.6	13.1	14.2	89.4	19.6	39.8	17.1	10.2	28.6	29.0	46.3	51.7	95.1	50.5	79.1	59.4	45.2	34.6	37.9	90.9	88.2
ondit	low-pass (std=7)	48.5	18.9	16.1	16.4	78.4	11.9	16.0	9.8	6.9	6.6	16.0	18.6	14.4	87.2	20.5	13.8	13.5	7.1	9.3	74.7	74.9
on c	high–pass (std=0.7)	49.8	21.1	24.7	29.9	11.7	92.6	27.7	8.3	10.4	20.6	25.1	22.8	29.2	25.0	94.3	27.5	28.3	18.9	19.8	91.4	90.7
luati	phase noise (90°)	57.4	23.3	28.3	31.2	27.0	46.6	81.4	24.4	7.4	8.9	30.8	31.4	30.6	31.4	43.4	87.4	24.1	7.8	7.6	82.9	82.6
Eva	rotation (90°)	78.5	36.5	43.3	39.9	31.8	40.4	37.7	89.0	8.5	8.0	38.5	41.9	40.3	35.2	40.1	40.5	89.0	8.3	8.8	80.1	80.5
	salt-and-pepper noise (0.2)	NA	6.1	6.4	5.8	7.9	6.2	6.2	6.4	79.4	6.2	6.2	6.1	6.3	5.4	5.8	5.7	6.2	89.6	6.2	78.6	13.6
	uniform noise (0.35)	45.6	6.2	7.3	6.9	<mark>9.0</mark>	7.3	6.2	6.0	10.2	80.3	84.6	83.3	85.0	84.6	83.7	82.5	83.8	85.4	89.8	11.0	71.5
		Ners	'A	P22	20	AL	N.S.	4 No	A	40	00	\$	\$°	Ŷ	&∿	¢°	¢%	\$	Ŷ	¢⁰	ۍ ک	රු
	= manipulation included in training data																					
												Mode										

Figure: Classification Accuracy (in %)

- Models A1-A9: Training on a certain distortion improves the performance greater for that same distortion but only slightly for other distortions
- Models B1-B9: Training on a specific distortion combined with uniform noise improves more compared to models A1 to A9
- **Models C1-C2**: Training either without uniform or salt-and-pepper noise leads to poor and closer to chance level performance

- Human visual system appears to be more robust than DNNs for the most part
- Diverging classification error-patterns between humans and DNNs as signal weakens
- DNNs surpass human performance only when trained on the exact distortions type they are later tested on
- Benchmark dataset of 83,000 human pyschophysical trials

Questions?